Maglev vonatok, működési elv, használat 1.rész
A lebegő mágnesvasút vagy lebegő mágnesvonat vagy gyakran használt angol rövidítéssel maglev[1] vasút olyan vasúti rendszer, amelynél a járművek pályán tartását és hajtását a hagyományos kerekek helyett mágneses mező végzi a mágneses levitáció segítségével. Ezzel a módszerrel akár a repülőgépekét megközelítő, 500 km/h-nál nagyobb sebesség is elérhetővé válik. A maglevvel menetrendszerűen közlekednek járművek, mágnessel a mágneses erőt hasznosítják az emelésre és a meghajtásra, ezáltal csökkentik a súrlódást, és magasabb sebességet tesznek lehetővé.
A Sanghaji lebegő mágnesvasút, szintén ismert mint maglev vonal, a leggyorsabb jelenleg üzemben lévő kereskedelmi szerelvény 430 km/h-s csúcssebességre képes. A vonalat a Sanghaj–Putung Nemzetközi Reptér összeköttetésére tervezték a Putung, Sanghaj belváros külső negyedével. A 30,5 kilométeres távolságot 8 perc alatt teszi meg a maglev vonat.[2]
A maglev vonatok még egyenletesebben és még halkabban haladnak, mint a vaskerekes tömegközlekedési járművek. Az időjárás relatíve nem befolyásoló tényező. Az energiafelhasználás tipikusan nem nagy százaléka a teljes energiafogyasztásnak,[3] megbirkózik az akadályokkal, mint más fajta gyors sebességű vonatok. Maglev vonatok tartják a sebességi rekordot a vasúti szállításban. A vákuumcsöves vonat rendszerek elérhetővé tennének még magasabb haladási sebességet a maglev vonatokhoz képest, bár a mai napig nem épült ilyen vonat.[4] Összehasonlítva a konvencionális vonatokkal, a maglev vonatok hatékonysága miatti különbség az energiafogyasztása, ha a gazdasági szempontokat nézzük. A gyors kerekes vonatok kopnak és súrlódnak a „kalapács effektus” révén, amikor a kerekek a síneken gyorsuláskor nagyobb sebességet érnek el. Bár a maglev rendszerek kivitelezése sokkal drágább, alacsonyabbak a fenntartási költségeik.
Évtizedek kutató és fejlesztő munkája ellenére, csak két kereskedelmi maglev vonat rendszer van működésben, és két másik van építés alatt – nem beleértve a jamanasi tesztvonalat –, amely egy 2013-ban indított fizetős, országos szolgáltatás. A másikat a Csúó Sinkanszen felé tervezeték bővíteni. 2004 áprilisában a sanghaji maglev vasúti rendszert üzembe helyezték. 2005 márciusában Japánban működni kezdett a relatíve lassú „Linimo” vonal a 2005-ös világkiállításra, amely pár hónap alatt több mint 10 millió utast szállított.
Dél-Korea és a Kínai Népköztársaság is építettek alacsony sebességű, saját tervezésű maglev-vonalakat, az egyik Pekingben, a másik Szöulban található. A sanghaji rendszert fehér elefántnak minősítették ellenzői. A maglev elv
A villanymotoroknál az állandó mágneses kölcsönhatás forgatja az állórészben (sztátor) a forgórészt, a rotort. Azonban, ha a hengeres villanymotort a palást mentén felvágjuk és kiterítjük, két hosszú elemet kapunk és a tekercseibe vezetett áram mágneses hatására egymás felett elmozdul.
A maglev vasút felépítése, működése
Az EDS (japán rendszerű) maglev szemből…… és felülről nézve
A vonat nem a hagyományos kerék-sín kapcsolatot használja. Kerekek helyett elektromágnesek vannak a szerelvény aljában, amiket a kocsikban lévő akkumulátor táplál. A pálya 6 méter magas betonoszlopokon fekvő elektromágnesekből áll. Az azonos mágneses pólusok (a pályán, illetve a vonaton) taszítják egymást.
A maglev vonat részére teljesen különálló pálya kell. Ez jelentősen megdrágítja a beruházást. Továbbá a maglev pályáját semmi nem keresztezheti. Ezért zárt vagy emelt szintű pályát kell építeni. A sínrész 6-10 méter magas betonoszlopokon helyezkedik el.
A maglev vonatok két legismertebb változata a japán és a német fejlesztésű maglev vonat.
A japán maglev vonat az úgynevezett EDS (electrodynamic suspension, azaz elektrodinamikus felfüggesztés) rendszert használja, mely a következőket takarja:
A vonat egy csatornában – azaz U alakú vezérsín mentén – fut, lehetetlenné téve a kisiklást. A tekercsek a mozdony aljában kölcsönhatásba lépnek a vezérsín (állórész) tekercseivel, melyek áram hatására mágneses mezőt hoznak létre, így mozdítva el a kocsikat. A szerelvény oldalán irányítómágnesek helyezkednek el, melyek megakadályozzák a vonat esetleges falhoz való ütközését. Az EDS rendszert a japánok fejlesztik, a vonat neve JR-Maglev, azaz a Japan Rail Maglev. Ez a maglev akár 10 cm-re is képes lebegni a pálya felett. A frekvencia növelésével a maglev vonat egyre gyorsabban halad, míg el nem ér egy bizonyos értéket. A vonat gumikerekeken gyorsul fel, majd a 100 km/h-s sebesség elérése után a kerekek visszahúzódnak, mivel ekkor az elektromos ellenállás hirtelen nullára csökken, és a szerelvény lebegni kezd. A japánok szerint a gumikerekek hasznosak lehetnek, ha valamilyen okból a rendszer meghibásodna és leállna. Ennél a rendszernél jelen vannak a szupravezető elektromágnesek is. Ez a fajta elektromágnes lehetővé teszi az elektromos áram folyását akkor is, mikor a forrás ki van kapcsolva, ezért a japán maglev sokkal kevesebb energiát igényel, mint a német fejlesztés, mely a standard elektromágneseket részesíti előnyben (csak akkor folyik áram a tekercsekben, amikor a forrás be van kapcsolva). Hűtéssel egy bizonyos hőmérséklet alatt a szupravezetők elektromos ellenállása közel nulla, és az áram veszteség nélkül folyik, míg az anyag a kritikus hőmérséklet alatt van. Ha ilyenkor a szupravezetőt valamilyen mágneses mezőbe tesszük, akkor az anyag azt teljesen kiszorítja belsejéből, ám ez megszűnik, amint az anyag átlépi azt a bizonyos kritikus hőmérsékletet. Ez azt jelenti, hogy állandó alacsony hőmérsékletre van szükség a maglev vonatok tekercseinek működéséhez, amit folyékony nitrogén és hélium használatával érnek el. Az ilyen tekercseknek számos előnyük van, például a mágneses mező körülbelül 10-szer nagyobb, kevesebb energia szükséges a működtetéshez, mivel a forrást ki lehet kapcsolni. Az erős mágneses mezők ellenére a pacemakerrel rendelkező számára nem jár különösebb kockázattal a japán maglev vonatok használata, hiszen az utastér szigetelése megóvja a benne tartózkodókat.[6]
Az EMS (német rendszerű) maglev
A német Transrapid az EMS (electromagnetic suspension, azaz elektromágneses felfüggesztés) rendszert alkalmazza. Itt a vonat egy T alakú sínt ölel körül. A sín és a jármű közötti távolság igen kicsi (1 cm), és ez igen nagy precizitást igényel. Emiatt szenzorokat kell szerelni a jármű aljára, melyek segítségével szabályozható a szükséges távolság. A rendszer leállása esetén akkumulátorok biztosítják az áramot további egy órán keresztül. A mágneses mező sokkal gyengébb a standard elektromágnesek miatt. A technológia viszonylag egyszerű, valamint a gumikerekek és a szupravezető tekercsek hiánya jelentősen lecsökkenti a német maglev vonat árát, viszont a kis sín-vonat távolság állandó figyelmet igényel, mivel bármilyen kisebb elmozdulás a rendszer hibás működését okozhatja. A karbantartási költségek így jelentősen megemelkedhetnek. A sztátor tekercsei a sínrész alján helyezkednek el az úgynevezett „stator pack”-ben védve a környezeti hatásoktól.
Mindkét típus lineáris szinkron motort alkalmaz, melynek sztátora a betonsínbe van építve, míg a rotorrész a vonat aljában helyezkedik el. A jármű nem tartalmaz különösebben bonyolult rendszert, így azok könnyebbek, egyszerűbbek, olcsóbbak, és gyorsabban képesek futni, mint azok a maglev vonatok, melyek lineáris aszinkron motorokat használnak a működéshez. A lineáris aszinkron motor sztátora a vonaton helyezkedik el (emiatt a jármű nem képes olyan gyorsan haladni, mint lineáris szinkron motorral meghajtott társai), így a sínrész ára kedvezőbb, ám a járművek nehezebbek, bonyolultabb rendszert igényelnek, könnyebben elhasználódnak, mely a későbbiekben jelentősen megnöveli a karbantartási költségeket. Ezek a maglevek városi közlekedésre vannak tervezve. A pálya körülbelül 60 méteres szegmensekre van osztva, melyeket külön-külön látnak el árammal. Csak az a szakasz van ellátva árammal, amelyben a jármű az adott pillanatban tartózkodik, a többi szegmens kikapcsolható. Ez az energiatakarékos megoldás elméletileg megakadályozza két vonat összeütközését is (bár volt már rá példa, hogy egy próbakocsit ottfelejtettek a Transrapid sínein).
A maglev kocsijainak alvázáról „szoknya” lóg le, amire a hordmágneseket (kiterített rotort) szerelik. A T alakú betonoszlopokon nyugvó betonpályára a kiterített sztátort építik. Az áram mágneses hatására a betonpályáról néhány milliméter magasságba a kocsi felemelkedik. (Ez az emelkedés a Transrapid 08 típusnál 10 mm.) Az alsó karokba szerelt vezetők mágnesek, amelyeket a betonpálya aljára és peremére erősített mágneses sínek mindkét oldalon vonzanak. A mágneses erőt nagy teljesítményű számítógép szabályozza 100 kHz mintavételezési frekvenciával, ebből adódóan a kocsi „szoknyája” haladás közben nem súrolja a betonpálya oldalát vagy alját.
Amilyen egyszerű az elektro– és ferromágneses lebegtetés, valamint az előrehajtás elve, sokféle bonyolult részletet kell megoldani a sikeres működtetéshez.
Szerkesztő
Inter Japán Magazin